Russian Research in Nanophotonics in a Global Context

DOI: 10.20542/0131-2227-2019-63-4-29-39

A. Terekhov (a.,
Central Economics and Mathematics Institute of RAS, 47, Nakhimovskii Prosp., Moscow, 117418, Russian Federation

Abstract. As a promising spin off element of nanotechnology nanophotonics began to develop since early 2000s. Adoption of national nanotechnology programs by many governments, apparently, contributed to this. For tracking the emerging scientific and technological area, the bibliometric approach is often used. The source of information is the authoritative polythematical database Science Citation Index Expanded. The author firstly explores the formation of the world research landscape in the field of nanophotonics. To this end, 14 countries are selected, namely the G7 group of developed countries and the group of the most active Asian countries (A7). Then, the focus of analysis turns to the publication activity of compared units, their presence in the top-1% and top-10% segments of scientific literature, as well as the structure of their collaboration links. In particular, it is shown that while the Asian group dominates by total number of publications, the G7 group has the superiority in terms of contribution to the elite segments of these publications. As for Russia, it is presented in the top?10 countries in terms of productivity and citation indicators. It should be noted that in the field of nanophotonics Russia’s indicators are significantly better than in nanotechnology in general. With the help of bibliometric methodology the main institutional participants of research in Russia are identified, their contribution and positioning in world rankings are determined. For example, it is shown that the Russian Academy of Sciences is the third among comparable scientific organizations in the world, and two national universities (Moscow State University and ITMO University) are among the first hundred of world’s universities producing nanophotonics publications. Nevertheless, until now no Russian research unit can pretend for the status of world-class Center of Scientific Excellence. The results of governmental university-centered policy are further discussed in light of the performed bibliometric study.

Keywords: nanophotonics; scientific publication; bibliometric analysis; research landscape; international cooperation


1. Editorial. The hidden face of nanophotonics. Nature Photonics, 2011, vol. 5, no. 7, p. 379. Available at: (accessed 30.10.2018).

2. Nanophotonics. A Forward Look (2012). Available at: (accessed 05.08.2018).

3. Nanophotonics: Accessibility and Applicability. Chapter 4: Potential military applications of nanophotonics (2008). Available at: (accessed 05.08.2018).

4. Terekhov A.I. Mesto Rossii v menyayushchemsya nanotekhnologichekom landshafte [Russia’s place in an evolving nanotechnological landscape]. International Trends, 2017, vol. 15, no. 15(1), pp. 79-91. DOI:10.17994/IT.2017.

5. Shapira P., Kwon S., Youtie J. Tracking the emergence of synthetic biology. Scientometrics, 2017, vol. 112, no. 3, pp. 1439-1469. DOI:10.1007/s11192-017-2452-5

6. Santha Kumar R. Publication trends in global output of spintronics: A scientometric profile. Library Philosophy and Practice (e-journal), 2016, vol. 1480. Available at: (accessed 05.08.2018).

7. Terekhov A.I. Uglerodnye nanostruktury: naukometricheskii analiz, 2000–2015 (chast’ 1) [Carbon nanostructures: scientometric analysis for 2000–2015 (part 1)]. Bibliosphere, 2017, no 4, pp. 101-107. DOI:10.20913/1815-3186-2017-4-101-107

8. Luukkonen T., Tijssen R. J.W., Persson O., Sivertsen G. The measurement of international scientific collaboration. Scientometrics, 1993, vol. 28, no. 1, pp. 15-36. DOI:10.1007/BF02016282

9. Glanzel W. National characteristics in international scientific cooperation. Scientometrics, 2001, vol. 51, no. 1, pp. 69-115. DOI:https//;1010512628145

10. Terekhov A.I. Uglerodnye nanostruktury: naukometricheskii analiz, 2000–2015 (chast’ 2) [Carbon nanostructures: scientometric analysis for 2000–2015 (part 2)]. Bibliosphere, 2018, no 1, pp. 57-65. DOI:10.20913/1815-3186-2018-1-57-65

11. “Metasurfaces” – harbingers of new optical technologies (In Russ.) Available at: (accessed 05.08.2018).

12. Tijssen, R.J.W., Visser, M.S., Van Leeuwen, T. N. Benchmarking international scientific excellence: are highly cited research papers an appropriate frame of reference? Scientometrics, 2002, vol. 54, no. 3, pp. 381-397. DOI:10.1023/A:1016082432660

Registered in System SCIENCE INDEX

For citation:
Terekhov A. Russian Research in Nanophotonics in a Global Context. World Eonomy and International Relations, 2019, vol. 63, no. 4, pp. 29-39.

Comments (0)

No comments

Add comment






Dear authors! Please note that in the VAK List of peer-reviewed scientific journals, in which the main scientific results of dissertations for the degree of candidate and doctor of sciences should be published for the “MEMO Journal” the following specialties are recorded:
economic sciences:
5.2.5. World Economy.
5.2.1. Economic Theory
5.2.3. Regional and Branch Economics
political sciences:
5.5.4. International Relations
5.5.1. History and Theory of Politics
5.5.2. Political Institutions, Processes, Technologies


Current Issue
2024, vol. 68, No. 7
Topical Themes of the Issue:
  • The Supporting Structure of Global Security
  • Institutional Features of the Fourth Energy Transition
  • The Evolution of Modern German Christian Democracy
  • The Monarchies of the Persian Gulf and Central Asia
Submit an Article
The Editorial Board invites authors to write analytical articles on the following topics:
  • changes in the processes of globalization in modern conditions
  • formation of the new world order
  • shifts in civilization at the stage of transition to a digital society

The editors are also interested in publishing synthesis articles / scientific reviews revealing the main trends in the development of certain regions of the world - Latin America, Africa, South Asia, etc.